

Survey design and methodology: sampling, response and weighting

Paul Bradshaw

Outline

- Study design
 - Research objectives
 - Study design overview
 - Sample design
 - Data collection
- Response rates
- Weighting
 - Overview
 - Weighting for GUS

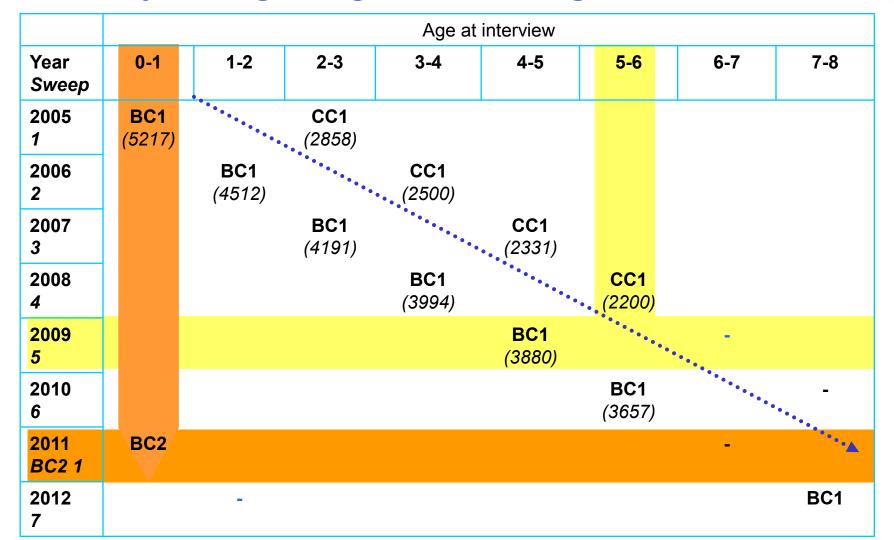
Study Design

GUS: The 'purpose'

"To generate, through robust methods, specifically Scottish data about outcomes throughout childhood and into adulthood for children growing up in Scotland across a range of key domains:

- •Cognitive, social, emotional and behavioural development
- Physical and mental health and wellbeing
- Childcare, education and employment
- •Home, family, community and social networks
- Involvement in offending and risky behaviour

Such data will encompass, in particular, topics where Scottish evidence is lacking and policy areas where Scotland differs from the rest of the UK."



Study Design: Outline

- National sample capable of analysis by urban/rural, deprived/non-deprived and other sub-groups of interest
- Sample drawn from Child Benefit Records
 - Good coverage
 - Some limitations
- Three cohorts:
 - Birth cohort 1: 5217 children aged 10.5 months at the 1st interview
 - Child cohort: 2859 children aged 34.5 months at the 1st interview
 - Birth cohort 2: c6000 children aged 10.5 months at the 1st interview

Study design: ages and stages

Sample Design (1)

- Random/Probability sample
 - Every person in sample frame has a known (and non-zero) probability of selection
 - Statistical theory applies
 - You can calculate error
 - You can estimate non-response bias
 - Key concepts
 - Sampling error extent to which estimates based on random samples vary from true value in the population
 - Confidence interval estimate of the range in which actual value in the population will fall (+/-)
 - Confidence level how confident you are about your estimates
 E.g. 40% (+/- 3% at the 95% confidence level)

Sample Design (2)

Clustering - area level sampling

- Areas made up by aggregating Data Zones
- Data Zones merged into larger areas
- Each merged area had an average of 57 births per year
- List of areas sorted by Local Authority and then by SIMD
- 130 areas selected at random

Individual level

- Within each area, ALL babies and 3/5 of toddlers who met the date of birth criteria were selected
- Sampling undertaken monthly
- Multiple child households

Sample Design (3)

	Dates of Birth required					
Sample Number	Birth Cohort	Child Cohort				
1	01-June-2004 - 30-Jun-2004	01-June-2002 - 30-Jun-2002				
2	01-Jul-2004 - 31-Jul-2004	01-Jul-2002 - 31-Jul-2002				
3	01-Aug-2004 - 31-Aug-2004	01-Aug-2002 - 31-Aug-2002				
4	01-Sep-2004 - 30-Sep-2004	01-Sep-2002 - 30-Sep-2002				
5	01-Oct-2004 - 31-Oct-2004	01-Oct-2002 - 31-Oct-2002				
6	01-Nov-2004 - 30-Nov-2004	01-Nov-2002 - 30-Nov-2002				
7	01-Dec-2004 - 31-Dec-2004	01-Dec-2002 - 31-Dec-2002				
8	01-Jan-2005 - 31-Jan-2005	01-Jan-2003 - 31-Jan-2003				
9	01-Feb-2005 - 28-Feb-2005	01-Feb-2003 - 28-Feb-2003				
10	01-Mar-2005 - 31 Mar-2005	01-Mar-2003 - 31 Mar-2003				
11	01-Apr-2005 - 30-Apr-2005	01-Apr-2003 - 30-Apr-2003				
12	01-May-2005 - 31-May-2005	01-May-2003 - 31-May-2003				

Data collection

- Face-to-face CAPI interview with self-complete (CASI) section – just over 60 minutes
- Respondent to be child's 'main carer' but aimed to get mother as far as possible (and did so in upwards of 99% of cases at sweep 1)
- At subsequent sweeps aim is to interview, where possible, respondent from previous sweep

Timing of fieldwork

- Monthly 'waves'
- Target interview dates

Response rates

Response and attrition rates

	No. cases achieved	Response rate	As % of sw1 achieved
Birth cohort			
Sweep 1	5217	80%	100%
Sweep 2	4512	88%	86%
Sweep 3	4193	90%	80%
Sweep 4	3994	91%	77%
Sweep 5	3833	92%	74%
Child cohort			
Sweep 1	2859	79%	100%
Sweep 2	2500	89%	87%
Sweep 3	2332	90%	82%
Sweep 4	2200	90%	77%

Non-response

- Why is this an issue?
- After sweep 1, survey data and area-level variables are used to model non-response
- Factors affecting non-response are similar at each sweep
- Analysis indicates that non-response more likely amongst
 - Lower income families
 - Lone parents
 - Families living in more deprived areas
 - Mothers who had not breastfed
 - Parents who did not attend parent and child groups
 - Younger mothers

Weighting

Weighting: Overview

- Why do we need weights?
 - To make the achieved sample look as much like the population as possible
 - Selection weights correcting for unequal selection probabilities
 - Non-response weights to correct for any bias in achieved sample
- Advantages:
 - Correct for selection and non-response bias
 - Allow inferences about national population, not the sample
- Disadvantages
 - Reduce sample efficiency

How weights work

Unweighted sample

70% male

30% female

x 0.71 =

Weighted sample

x 1.67 =

50% male

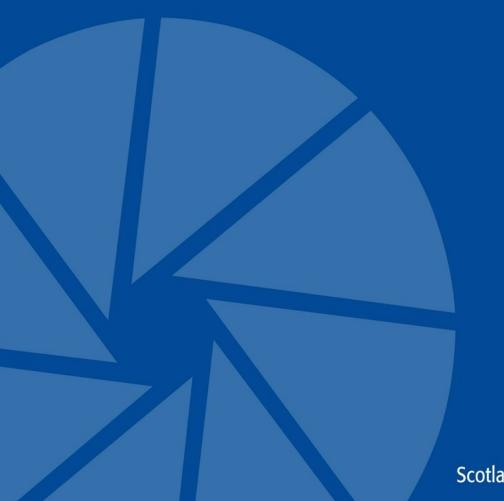
50% female

Weighting: Overview

- Why do we need weights?
 - To make the achieved sample look as much like the population as possible
 - Selection weights correcting for unequal selection probabilities
 - Non-response weights to correct for any bias in achieved sample
- Advantages:
 - Correct for selection and non-response bias
 - Allow inferences about national population, not the sample
- Disadvantages
 - Reduce sample efficiency

Sample efficiency (longitudinal)

	Actual	Effective	_	95% CI for an estimate of		
Cohort	sample size	sample size	Sample efficiency	10%	30%	50%
Birth						
Sweep 1	5217	5061	97%	0.8%	1.3%	1.4%
Sweep 2	4512	4294	95%	0.9%	1.4%	1.5%
Sweep 3	4120	3829	93%	1.0%	1.5%	1.6%
Sweep 4	3844	3484	91%	1.0%	1.5%	1.7%
Sweep 5	3621	3221	89%	1.1%	1.6%	1.8%
Child						
Sweep 1	2859	2777	97%	1.1%	1.7%	1.9%
Sweep 2	2500	2389	96%	1.2%	1.8%	2.0%
Sweep 3	2280	2146	94%	1.3%	1.9%	2.1%
Sweep 4	2100	2048	93%	1.3%	2.0%	2.2%



GUS Weights

- Sweep 1
 - Single weight corrects for selection and non-response bias
- Sweep 2:
 - Two weights:
 - Main interview weight
 - Partner weight
 - Each correct for non-response at sweep 2
 - The main interview weight includes the weight from sweep 1, the partner weight includes the sw2 main interview weight
- Sweeps 3, 4 and 5
 - Two weights because two 'samples':
 - Those who responded at all sweeps
 - Those who responded at the individual sweep but missed an intervening sweep
 - Longitudinal weights
 - Same method as used at sw2 combined non-response & sw2 weight
 - Cross-sectional weights
 - Calibration method

At all relevant sweeps there are separate final weights for each cohort. The cohorts <u>must</u> be analysed separately.

